Name: ____

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. **TRUE** False If two vectors are perpendicular to each other (they form an angle of 90°), then their dot product is 0.

Solution: The dot product is $\vec{v} \circ \vec{w} = |\vec{v}| |\vec{w}| \cos(\alpha)$ but $\alpha = 90^{\circ}$ and $\cos \alpha = 0$ so the dot product is 0.

2. **TRUE** False If we have found two different solutions to $A\vec{x} = \vec{b}$, then det(A) = 0.

Solution: If we have found two different solutions, then we know that there must be infinitely many solutions so det(A) = 0.

Show your work and justify your answers. Please circle or box your final answer.

3. (10 points) Let
$$A = \begin{pmatrix} 1 & 3 & 4 \\ 0 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 2 \\ 3 & 1 \end{pmatrix}$, $\vec{v} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$

(a) (2 points) Calculate $B\vec{v}$.

Solution:

$$B\vec{v} = \begin{pmatrix} -5\\-2 \end{pmatrix}$$

(b) (4 points) Find a solution to $B\begin{pmatrix} x\\ y \end{pmatrix} = \vec{v}$.

Solution: To solve
$$B\vec{x} = \vec{v}$$
, we multiply by B^{-1} to get
$$\vec{x} = B^{-1}\vec{v} = \frac{1}{7 \cdot 1 - 2 \cdot 3} \begin{pmatrix} 1 & -2 \\ -3 & 7 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 10 \end{pmatrix}$$

(c) (1 point) Is it unique? Why?

Solution: It is unique because $det(B) \neq 0$.

(d) (3 points) Calculate det(A).

Solution: We can calculate it as $1 \cdot 2 \cdot 0 + 3 \cdot 1 \cdot (-1) + 4 \cdot 0 \cdot 1 - 1 \cdot 1 \cdot 1 - 3 \cdot 0 \cdot 0 - 4 \cdot 2 \cdot (-1) = 4$.